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1. INTRODUCTION

In this paper we study level one integrable highest weight representations of some Kac-
Moody Lie algebras g(k), and the corresponding vertex operator constructions. We use the
technique of fermionic operators, which is developed in e.g. [1] and [2].

A Heisenberg subalgebra (HSA) § plays an important role for the vertex operator repre-
sentation of a Lie algebra g(k). A HSA is an algebra on a basis {p;, ¢; }icz., and the canonical

central element ¢ with commutation relations [p;,q;] = d;jc. If V' is a representation of g(k)
such that for all v € V there exists an N such that p;, ...p;v = 0 whenever 4; +...+4 > N,
it is completely reducible with respect to the action of 5. The only irreducible $—module
satisfying this condition is the ring of polynomials C[z] with the assignments p; — 0/0z;,
gi = =i, ¢ — 1. Therefore V can be identified with V* ® C[z] where the vacuum space vt
is defined by the set of all vectors which are annihilated by the p;.

In this way one obtains for every HSA § a realization for a given g®)—module V. Such
realizations can look very different, which is exemplified by the princiﬁa/m\l and homogeneous
realization of the basic representation of the simplest affine Lie algebra sls.

This paper is organized as follows: In section 2 we recall the prerequisites about the Lie
algebras Ao and é\ln and their representations on the infinite wedge space that will be needed
in the sequel. Each choice of a HSA leads to a decomposition V ~ C[z]® V'*. In section 3 we
look at several of those decompositions. In a number of cases, the main one being the partition
n = {ny,n2}, we compute directly the isomorphism of linear spaces 7 : Clz® @Vt — Clz],
where C[z] corresponds with the principal realization. This gives relations between Schur
polynomials. Further we look at the principal degree of the image of a polynomial which
culminates in a g-dimension formula.

2. PREREQUISITES

2.1. The Lie algebra glo,. The associative Lie algebra glo, is the collection of Z x Z-matrices
defined by

(1) glso = {(aij)ijez | aij € C, all but a finite number of the a;; are 0}

with the matrix commutator [A, B] = AB— BA as Lie bracket. Denote by &;; the matrix with

1 as the (i,J )th entry and all other entries equal to zero. The &;; form a basis for gle. Let
C*® = ®;ezCv(j) be an infinite dimensional complex vector space with basis {v(4) | s € Z}.
1
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The Lie algebra gl acts on C* by

(2) Eijv(k) = 8jxv (i)
The group G Ly, associated with the Lie algebra gl is defined as
(3) GLy = {Id+A | A € gls,det(Id +A) # 0}

In order to include the infinitesimal generators of certain flows one passes to the extension
gl of the Lie algebra gly. It is given by:
(4) 9loo = {(aij)ijez | aij = 0 for i — j| > 0}

Matrices in gl have a finite number of nonzero diagonals. The product of two matrices in
gloo is well defined, and is again in glu, S0 gl is a Lie algebra containing gl as a subalgebra.
The gloo-action on C* extends naturally to an action of gl

2.2. The infinite wedge space. Let A®C™ be the vector space with a basis consisting of
all semi-infinite exterior products of the basis elements v(k) of C* of the form:

(5) v(ig) Av(i—1) Av(ig) A...

such that ig > i1 >4_2 > ... and i_;_; =i_; — 1 for I > 0. The space A*°C* is called the
infinite wedge space.

One can distinguish the basis elements (5) by their behaviour at large I. An element of
the form (5) has charge k if i_; = k —{ for all / > 0. For instance the vector

|k) :=v(k) Av(k —1) Av(k —2) A

has charge k. The vector |k) is called the kP vacuum. The vector space of all vectors of
charge k is denoted by F&)_ One has a decomposition of the infinite wedge space in sectors

of fixed charge:
AeC® = @ F®
keZ

For every k € Z one defines linear operators (k) and 1*(k) on the infinite wedge space by
their action on the basis vectors:

(6) (k) (v(io) Av(i_1) Av(icg) A...) = v(k) Av(io) Av(i1) Av(ia) A..

9* (k) (v(io) Av(iot) Av(izg) A = 3 (=16 wlio) Av(ioy) A ABG) A

=0

where the notation ¥(i_;) means that the vector v(i_;) is deleted. These operators satisfy
the anticommutation relations:

(7) {9(k), (1)} = 0= {4~ (k),%* (D)} and {$(k),$" (1)} = O
where the anticommutator {A, B} is defined by {A,B} := AB + BA.

Any element of the infinite wedge space A°°C* can be written as a finite linear combination
of elements of the form

(8) p(k1) - (k)™ (1) - - - 97 (1)]0)

where k; > ... >k, > 0>1; > ... > l;. This means that one could also have constructed
the space A®C®™ in a different manner. Namely, let Cl be the Clifford algebra on generators
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(), ¥*(i) i € Z with relations (7). Define the socalled fermionic Fock space F' as the unique
irreducible Cl-module, which admits a vacuum vector |0) such that

(9) $(@))0)=0 Vi<0and¢*(i)[0)=0 Vi>0

Then we have F = A®C®. The fermionic Fock space F' is also called the spin representation
of Cl.

The space A®*C™ can be equiped with an inner product ( , ), which is uniquely determined
by the requirements

(10),10)) = 1 and 9 (k)! = 9*(k),

where A' denotes the adjoint of a linear operator A on A®°C® w.r.t. the inner product ( , ).
Then the elements (8) have length 1. One defines

(10) (014]0) := (|0), A|0))

where A is a linear operator on A®C®. The quantity (10) is called the vacuum expectation
value of A. Sometimes one abbreviates it to (A).

2.3. Representations of gl,, on A®C™. One can define representations p of glo, and the
corresponding one R of GLy on A®C* by

p(a)(v(io) Av(i-1) Av(ig) A...) = av(ig) Aw(i_1) Av(i_g) A...
(11) +v(ip) Aav(i—1) Av(i—g) A...
+v(io) Av(iz1) ANav(i—2) A...+ ...
(12) R(A)(’U(Zo) A v(i_l) A 'U(’i..g) I sss ) = A’U(’io A A'v(i_l) A A’U(’i_z) A .
The action of the elements &;; can be written as p(&;;) = ¥(4)¥* (7).

The submodule F(¥) is an irreducible highest weight module for the algebra glo. One has
for 5 >

(13) p(€ij)k) =0

and

(14) p(Eii) k) = Ok (&)l k)

where the linear mapping 6i : ®;czCE;; — C is defined by
0ifi >k

1 0k (i) =

(15) k(Ex) {msk

It is not possible to extend the representation p to the extension gleo by linearity. For
example the identity matrix Id is an element of gloo. Its action on the vacuum vector |0) is
p(Id)|0) = 00|0), so it is not well defined. A remedy for this problem would be to subtract a
term from p and to define

(16) w(Eij) = p(Eij) — 0i500(Eis) 1.
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For each A =}, ; @ij&;j € gloo the operator m(A) = 3, ; aijm(Ey;) is well-defined. However,
it is not a representation of gl,, anymore since

(17) [7(€i5), m(Er)] = [p(Eij)s p(Ert)]

dikp(Eir) — 01ip(Erj)

= 0km(En) — 0uim(Exj) + 6jk0100(Esi — E;j)
= ([, Erl) + 0ikdiibo(Eii — Ejj)-

This additional term determines a 2-cocycle p : gleo X gloo — C by the bilinear extension of
(18) p(Eij» ) = 00100 (Eii — Ejj)-

The 2-cocycle i determines a central extension Ao, := gl @ Cc of gl with the Lie bracket
on Ay given by

(19) [A4+ac,B+Bc]=AB - BA+u(A,B)c  A,BEgly, a,3€C.

If one defines m(A + ac) = 7(A) + aId then 7 is a so-called ¢ = 1 faithful representation of
A~ and one writes g, = T(Aco)- 94

The representation m can be expressed in terms of the fermions ¢ and ¥*. One has n(;;) =:
1 (2)1* () :, where the normal ordering : 9 (i)y*(j) : is defined by
(20) (@Y 2 = P@PT() — Ol(2)%*(5)[0)

Y)Y (5) if 5 >0

—1p*(7)1 (%) otherwise

2.4. The principal degree. On F(©) one assigns a degree to a monomial of the form (5) by

o0

(21) deg(v(io) Av(i—1) Av(icg) A...) =Y (i_s+ )
s=0

Then the degree is a finite nonnegative integer. This degree is called the principal degree.
Let Fl(o) denote the linear span of all vectors in F(®) of degree I. Then

FO =@ F® and dimg FO := 3" (dim F)¢' = o(g) 7,
>0 l

where ¢(q) = [T;50(1 - ¢°).
One can express the degree in terms of the (i) and the 9*(j). If one put deg(i) = 1,

deg*(j) = —j and deg(|0)) = O,then the degree of (8) is given by k1 +...+k, =11 —... —,.
This degree coincides with the degree above on F©). Define
(22) Ho=> k:p(k)p*(k):

kEZ

Then [Hy, (k)] = ky(k), [Ho,¥* (k)] = —ky*(k) and Hp|0) = 0. The operator Hy is called
the Hamiltonian or Energy operator. Its eigenvalues are the degrees of the eigenvectors.
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2.5. The oscillator algebra. Define the shift operators My : C*® = C* by Mv(j) =
v(j — k). Then the corresponding matrices Ay € gl are

(23) Ak =) Ejjrk
JEZ

They form a commutative subalgebra of gleo. It is a straightforward verification that
p(Ag, Ay) = kbg410 so the Ag have in Ao the Lie bracket

(24) [Ak, Ai] = Edgt1,0¢
Then (@rezCAx) ® Cc is a subalgebra of As, the so-called bosonic oscillator algebra A.

Define a(k) := m(Ag), then
(25) alk) = w{)$ (G +k) :
JEZ
They satisfy [a(k),a(l)] = kékt10. The operator (0) is called the charge operator, its

eigenvalues are the charges: a(0)|zx = k-I. There holds a(k)|0)y = 0 if £ > 0. From
[Hy, a(k)] = —ka(k) one sees that a(k) has principal degree —k.

There exists a standard representation of A in the space of polynomials in infinitely many
variables z (kK > 1). It is given by:

a(k) — =—,a(—k) — kzi, for k> 1, a(0) — pld, c —1d

8$k

In this space C[z] = C[z1,%2,%3,...] one has

(26) deg(zk) =k

2.6. Vertex operators. One defines 9(z) := S ap(k)zF, p*(z) = S ap*(k)z~F, where z is a
formal parameter. The v(z), 1*(z) are generating operators for the ¥(k), ¢¥*(k). They are

called fermionic fields. These fields can be expressed in terms of the bosons c(k). The fields
are eigenvectors for the adjoint action of the a(k):

[a(k), $(2)] = 25(2) and [a(k), %" ()] = —2"4"(2)

There is a well-known expression for the fermions in terms of the bosons (see e.g. [4]):
(27) ¥(z) = QOTET()E(2)

'(/j* (z) — —-lz—a(O)E—- (z)—1E+(z)—1
where

1
) — L o(k)2—F
E~ -exp< Z —a(k)z™ )andE(z) exp( Zk )

k<0 k>

and Q : F®) - F(+1) is an operator satisfying

28) QU(z) = #'(z)Q  and Q[0)
QU(s) = ' (2)Q Qo)

The operator @ commutes with all bosons c(k) except for k = 0:

(29) [a(k), Q] = 6ro@

[l
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One can look at the generating operator for the action of A, on F&).

(30) X(u,v) = Z 7 (Ep)uFv!

k€L

= > Ry vt = p(w)yt(v) -

k,l€Z
Now one uses equations (27) and : ¥(u)*(v) := ¥(u)*(v) — (0[tp(u)1*(v)|0) and obtain
(31) X(u,v) = %i);_;gE_(u)E_(U)'lE"'(u)£7/‘+(11)_1 ~3 —1v/uI

—a(0)
(32) = %exp (Z %(’uk = vk)a(—k))
k>0
P T 1
exp (—;L;()E(u —v )oz(k)) o v/uI

Here 17 is a formal power series in « and v: 1_—1}/5 = k>o(v/ u)*. Thus one sees that the

action of the algebra Ao, on the infinite wedge space can be completely expressed in terms of
the action of the subalgebra A of all oscillators. Combining this with the fact that the charge
k sector is an irreducible A, -module, one concludes that F(*) must remain irreducible under
the action of this oscillator algebra.

2.7. Schur polynomials. The elementary Schur polynomials Sk(z) € C[z] are defined by
the generating function

(33) Z Si(z)2F = exp (Z wkzk>

kEZ k>0
Then
(34) Sk(z) =0 for k <0, So(z) =1
k1, k2
(35) Sy = Y LT fork>0
k1! k!
k1+2ko+...=k

One denotes the set of partitions by Par. Thus A € Par is a nonincreasing finite sequence of
positive integers Ay > A2 > ... > A, > 0. In the sequel also a different notation will be used:
the integers are labeled by k < 0, and the sequence is extended with zeros; so we have

Par ~{(\) | k<0, IN:p> N = A_, = 0}.
To each )\ € Par one associates the Schur polynomial S (z) defined by the determinant
(36) Sx(z) := det(Sxi—i+j (@)

With respect to the principal gradation on A®C* the Schur polynomial Sx(z) is a homoge-
neous polynomial of degree || := A; + X2 +.... The (S))repar form a basis of C[z].
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2.8. Boson—fermion correspondence. One has an isomorphism of .A-modules
(37) Clz] = Clz1, 72, ...] = {a(—k1) ... a(=k:)|0) | k; > 0} = F(©)

The isomorphism o : F(O) — C[z] is called the boson-fermion correspondence.
Every F%) ig jsomorphic with C[z]. The factor QF indicates the charge sector F&)_ Then
o : A°C® — Clz; Q,Q™!] is characterized by (k € Z, | > 0)

0 d
— Ok o Dol = 1=Q— 1=
a(lk)) = Q% oa(l)o™" = axl,aa( Do lz;,00(0)0 QdQ,aIda Id.

Define
(38) H(z) := kaa(k)

Then e#(®) is well defined on A®C®. On the charge zero sector o is given by (see [2] or [1])

(39) o(A|0)) = (0]e™®) AJ0)

In general it is given by

(40) a(Al0) = > 2F(kle" @ A10) = > _ 2Far(4]0))
kEZ kez

One has the following expressions for the transported operators

Ti(z) = oEY(2)0™! = exp (Z %z—ka_i,;>

k>0
I_(2) := oE (2)0”! = exp (Z zkmk)
k>0
and
I'u,v) = O'E_(U)E_(’U)—lE+(’U.)E+(’U)—10'—1
= exp (Z(uk - Uk)iL'k) exp (— Z %(u’k - v_k)—a—g—)
k>0 k>0 .

In [3] the following theorem is proved:
Theorem 2.9. For v(ig) Av(i—1) Av(i—2) A... € FO there holds

(41) o(v(io) Av(i—1) Av(i—2) A...) = Sigi_1+1i_242,..(2)-

2.10. The Kac—Moody algebra gln. Let gl, denote the Lie algebra of all Somplex n X n-
matrices with the standard basis (Eij)1<ij<n- One defines the loop algebra gi;, as

(42) gl = P treln
kEZ

with commutation relations [At¥, Bt!] = [A, B]t**!. The loop algebra gl,, acts in a natural
way on C[t,t~1]". Let (e;)1<i<n be the standard basis of C". Define unk4; := t~%e;. Then
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the (ug)rez form a basis of C[t,t™!]"* over C. Thus C[¢,t~ ]” ~ C®. The Lie algebra g,
embeds into gl by the Lie algebra homomorphism ¢ : gl — gloo determined by

(43) t Ez] ZS n(s—k)+ins+j

SEZL
The image of ;ln in gly, consists of
u(gln) = {(aij) € gloo | Gitn,jtn = i}
By restricting the 2-cocycle p to L(g~ln) one gets a 2-cocycle for g;ln It is given by
p((tF A), u(t'B)) = kg11,0Te(AB) =: kdk+1,0(AlB)

and determines a central extension Eln of gln This Lie algebra is called the affine Kac-Moody
algebra associated to gl,. It will be viewed as a Lie subalgebra of Ay

Define F € gl, by E = Zz____% Ef k+1 + E1n. Then
(44) h, = € CE*

1<k<n
is a Cartan subalgebra (CSA) of gl,, the principal CSA. This £ mduces the element E =
Zk:l Egjt+1+ Bt € gln (see e.g. [3]). It is easy to show that L(E )= Ak, K€ Z.

We now have a representation 7 o ¢ of Eln in A®C®. The representation F(™) s irreducible
under gl,, since the latter contains the A; (j € Z) and F(™) ig irreducible under the action of
A. The action of gl,, in F() is given by the vertex operator

(45) s p(wRu)y* (w™l) 1<kl<n

where w = e’n' (see [4]).

3. ISOMORPHISMS OF SCHUR POLYNOMIALS

3.1. Fermions with various components. It is well-known that the conjugacy classes
in W(gl,), the Weyl group of gl,, are parametrized by partitions of n. Any partition n
of the number n in s parts ni, ng,..., ns determines a direct sum decomposition C"* ~
C" @ ... @ C™ and an associated block decomposition of a n x n-matrix. The diagonal
blocks correspond to Lie algebras gl,, and the principal construction of subsectlon 1.9 tells
us how to make vertex operators describing the action of the affine algebra gl . So one just
takes s copies of the construction above or, which is the same thing, one should work with
s-component fermions ¥;(k), ¥} (k), 1 <i < s, k € Z. The problem is how to find vertex
operators associated to the off diagonal blocks.
A partition n of n leads to s-component fermions:

(46) vil +mn;) = P(ni+...+ni_1 +1+mn)
Pr(l+mn;) = P¥(n1+ ...+ i1 +14+mn) 1<l<n;,meZ
These fermions satisfy the relations
{i(k), ()} = {¥i (k),%; ()} = 0O
(47) {i(k), ¥ (D} = 00
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In terms of these fermions the spin module A®°C* can also be defined as the unique Cl-
module generated by a vacuum |0) satisfying

;(k)|0) =0,k <0 Vi and 9; (k)|0) =0,k > 0 Vi.
Now one defines

(48) ai(k) = i+ k) :

leZ
Then one obtains in the same way as in the one-component case

(49) PYi(2) = Qizai(0)+1 exXp ( Z kaz ) €xp ( Z —ai(k )

k<0 k>0
(50)  %i(2) = Qe Oexp (Z %ai(k)z"“) exp ( %ai(k)z"“)
k<0 k>0

where the operators ); satisfy

Qii(k) Pi(k +1)Q;

Qi (k) = ¥i(k+1)Qi
(51) Qﬂ/};(k) = —¢;i(k)Qi 1#]J

Pi(k) = —i(k)Qi i#J

QiIO) = (1)[0)
The basic representation L(Ag) of gl is isomorphic to F(©) The vacuum space V1 of the
glp,-module F(9) is spanned by the vectors

(52) - T 7H0), m; €Z
where T; := QiQ,L-jrll, 1<i<n-—1 (see [4]).
3.2. Two types of fermions. Let n be a positive integer. Here we look at partitions of n in

two parts: n = nj + ng where ny,ny € Zsg. Let (v(k))rez be a basis of C*°. We can relabel
this basis with respect to the partition of n mentioned above. We then get:

vifmny+1) = vimn+l)meZ,1<I<m
vo(mng +1) = vimn+n+l)meZ,1<1<ny

We can also relabel the fermionic operators (k) and ¢*(k) in the same way. These relabeled
operators then have the anticommutation relations

{wi(K), (D} = {1/11() Pi(0)} = 0
{Wi(k),v; (D} = 040 1,5 =1,2

These are the anticommutation relations for fermionic operators of two different types. These
relabeling leads to the following isomorphism

Clz] = FO ~ FO @ F” @ C[T, 77 ~ C[zV, @, T, T~

Here T is the operator Q1Q2_ . It creates a fermion of type 1 and annihilates a fermion of
type 2.
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It is convenient to define the following functions:

708 o= |22tk and 1) = "=

Here is k € Z. These functions satisfy the relations v;(k) = v(fi(k)) where i = 1,2. De-
note by v : Clz(1),2®),T,7-'] - C[z] the above mentioned isomorphism. A basis for
ClzW,z®), T, T~1] is given by TkSu(m(l))S,\(m@)), where A, u € Par. We now want to com-
pute the images of the basis elements in C[z]. For k € Z we define k; € Z,1 < k; < n; by
k = k; mod n;. Then we are ready for the following

Theorem 3.3. For k > 0, k = mngy + ky we have

Jn1+n1+k.

(53) YT* S, (&) Sa(2P)) = (—1)* St (@)
where
= B 1 ALY N
cy = 2’!’L2k 2(n1 + l)k + 99 kz(nz k‘g)

For —k —mn; +1 <r <0 we have

_ M+k+r—1
o) — [kers
n
= fih+k+r)—r

Forp<0,1<g<ni;,pn+q< —k—mn; =—mn— ks we have

Jn2+)\r+k‘

Akipni+qtq—1
ni

¥(pn + q, 1, A) = [ J ng + }‘—k+pn1+q
= fiktpm+q+ ) — 4
Forp<0,1<qg<ng,pn+q+n; <—k—mn; =—mn — ky we have

Pk+pnatq +q—1
n2

¥(n +q+ny,p,A) = { J N1 + Bktpnatq

= f2(l‘k+pnz+q +q)—qg—ng
In the case that the power of T is negative we have (k > 0,k = mny + k1 ):

YTFSu(@)SA(=P) = (=1)° S5k (@)

where ’
n 1 N9

= —k 4 (e —1Dk+ —ki(n1— k

¢ g T g Lkt ol — )
For —mn — k1 —n9s+1 <r <0 we have

+k+r—1
¥(rp,A) = [“Ln—er-i-ur-i-k-l-nl
2

= folpr +k+7) -7
Forp<0,1<q<mni,pn+qg< —mn—ny—k; we have

)\k+pn1+q +g—1
n1

"y(pn +q, i, >‘) = J ng + )‘k+pn1+q

o fl()‘k+pn1+q +q)—gq
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Forp<0,1<qg<mng,pn+q+n < —-mn—k; —ny=—(m+ 1)n—k; +n; we have

_ | P=ktpnate + 94— 1
n2

Y¥(pn + q + n1, p, A) J N1 + Bektpnotq

= fo(B—ktpnytq +9) —q—m
These last formulas are also valid for k = 0. Then we have to take m = —1 and k; = n,.

Proof. The formulas have been calculated following the isomorphism C[z("), z®) T, T7-1] —

F(O) ®F(0) ®C[T, T~ — F(© —; C[z] step by step. We will sketch the proof for a positive
power of T, the proof in the other cases is similar.

T*8,(zM) 53 (=@)
— TF{ 1Ay — )Y (=) ... 91 (Mo) %5 (0)}

{-- t2(p—g — DY3(—q) - - - P2 (1r0)13(0)} |0)
= {.. 1()\ —p =P+ R (=p+E)...1(ho + E)Y](K)}
{--tolp—g—a—k)95(—g — k). a0 — k)93 (—k)} T*|0)
= {..h(QAp—p+k)i(-p+k).. wl(/\o+k) P1(k)}
{-  ta(p—g—q— k)¢§( q—k)...¢2(wo — k)3 (—k)}
{1 (F)y3(—k +1)...91(r)ep3(— r+1)---¢1(1)¢5(0)}10)
= Jues 1(/\-p k—DP )"Pl("P) 1 ()\—k)%(o)
{-- Y2(p—q — g — k)3 (—q — k) ... Pa(po — k)¥5(—k)}

{3100 + KWk +1) .. 91 Ohoar + 10 (r + 11 Ormpsr + 1300} [0
= v(Agr1+F1A..LA Ul()\—k+nz + ’nz) A 'Ul()\—lc) A...\Nv ()‘—k—m-i-l —ni1+1)A
Avi(Aip1 +mng + 1) A ... Avi(No + k)
Nvg(po — k) A ... Ava(Bepytivr — (M + D)ng + 1)
AL (A—k—mny = mn1) A . A1 (A_g_(my1)ng+1 — (M + 1)ng + 1)
ANV (fhepypr — (M + D)ng) A ...
Now putting the factors A in decreasing order and using the boson-fermion correspondence

o we obtain formula (53). O

To illustrate the result one looks at a concrete example

Ezample 3.4. One considers here the simplest case n = 2 and n; = ns = 1. Now we get rid
of the entier functions. fi(k) = 2k — 1 and fy(k) = 2k, k1 = kp = 1. Then we get (k > 0):

cy = k’—k=0mod?2
Ye(r) = 22, +2k+7r—1 (—2k+2<r<0)
V(2P +1) = 2A_kypn1 (p < —k)
V(2 +1)) = 2pp4pt (p < —k)
c- = k*=kmod?2
Yk(r) = 2pr+2k+7r (—2k+1<r<0)
Y-k(2p+1) = 2Xeipp1 (p < —k)
V-k(2(p + 1)) 2p—k+4p+1 (p < —k)
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We thus have
Ye=2d+2k=1,..., 2/\_]' +2k—35-1,..., 22 ok+1, 200, 2X _ok, . . . s 21, 2X _op_y,. . )
Y-k = (200 + 2k, . .., 20— + 2k — G, ..., 20 k1 + 1,200k, 2X0, -+ -, 28_2k1, 22y, . ..

In this case we can find a formula for the degree of this polynomial. Remember that on C[z]
we have the principal degree deg. Then we easily derive that

(54) deg(Y(T*Su(zM)Sx(2P))) = 2lul + 2|A| + 2k — &

for all k € Z. Here |u| := 3, p1p, the principal degree of S,,. In the general case it is not so
easy to find a nice expression for the degree of the image polynomial in terms of the principal
degrees of the original Schur polynomials and the integer k. Therefore we first look at v(T%).
For k > 0 we have

(55) i) = Pl ) — = {

for =k —mn; +1 < r < 0. For k£ < 0 we get a similar formula. A straightforward calculation
now gives:

(56) deg(v(T*)) =

This formula is valid for k € Z.

k+r—1

n

an—i-k

nk(nk — ning) + ngkl(nl — k1) + n%kz (ng — k2)
2711712

3.5. The degree of a polynomial. The principal degree of a polynomial in C[z] corresponds
in FO with the eigenvalues of the operator Hy where

(57) Hy = k: (k) (k) :

keZ

This operator has nonnegative integer eigenvalues. It is an element of m(gls,) namely Hy =
(D okez kE€kk). We have a(k) = >,y : ())9*(I + k) :. These a(k) are bosonic oscillators.
The commutator of a(k) with Hy gives: [Ho, a(k)] = —ka(k). This means that we can assign
a degree —k to a(k), because a(k) changes the eigenvalue of Hy with —k. The principal
degree of zj can then be computed using the isomorphism between C[z] and F(®. This

isomorphism gives deg(zx) = k. We can also look at the oscillators a;(k) which are defined
by

(58) a;(k) =) i)Y+ k) :

leZ
Now we can try to compute the commutator of Hy with «;(k). Using

2
Ho=3_Y fip): $;()%;(p) :

j=1p€Z
we get the following formula
(59) [Ho, 0i (k)] = D (fi(p) — filp + B)Jbi(p); (p + k)
PEZ

The right hand side is in general not proportional to a;(k), so we cannot assign a principal
degree to (k). If kK = n;l then we can assign a degree to it because then [Hp,a;(n;l)] =

—nla;(n;l). So deg(a;(nil)) = —nl and deg(xffi)l) = nl. In the example we have ny = ny =1,

so every k is of the form k = n;l. So in this case we have deg(a;(k)) = —2k and deg(xg)) = k.
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In [4] another degree has been used. That degree corresponds with the eigenvalues of the
operator Dy defined by

2
il W N
(60) ZZ_O‘Z —p)a;(p )+§Zn—za1(0) +§IHn| I
p>01 1 i=1
R | 1
(61) ZZ—p WiP)i(p) - =5 D —i(0) + 5| Hal’I
i=1 peZ i=1

Not all eigenvalues of Dy are integers. Therefore we multiply the eigenvalues with a con-
stant N. Call the corresponding degree deg,. Then you can assign a degree deg, to «;(k):
degy(a;(k)) = =N n% and dego(wg)) =N n% It is not a surprise that in general one cannot
assign a degree deg, to a(k). One only has degy(a(nl)) = —NI and degy(z,;) = NI. In the

next subsections we consider the homogeneous realization.

3.6. The case 3=1-+1+1. In this subsection we present some formulas for the isomorphism
v in the case 3 = 1 + 1 + 1. In this case we have the two operators T} and T3 which
anticommute.

Theorem 3.7. For ko > 2k, > 0 we have
WIPT) = (-)FEdhteklg )
(_1)%k1(k1—1)+%(kz—kl)(3k2+k1—3)g,_y(x)

where
¥3p) = —6p+1 0>p>—k
¥(3p) = —bp—3k1 +2 —k1 2 p> —ko
(@) = 0 otherwise
Y(p) = 3(k2—k1)—1+2p 0>p> —ky+2k
Y(—ko+2k1+2p) = ko+ki—1+4p 0>p>—ky—k
( ko 4+ 2k1 + 2p 1) = ko+ki—1+p 0>p>—ko— Kk
(@) = 0 otherwise

deg(v(TFTF)) = 3k? + 3k% — 3kyky — k1 — ko

Proof. TR'T?|0) = (—1) #81i=D(Ty Ty)k1Tke=H1|).
(TyTp) 2% |0)

= (TiT2)* (va(ka — k1) Ws(—ka + k1 + 1) .. .9h2(1)¢5(0))]0)
(—1)Fr 2=k (oo (kg — Ky )5 (—ka + 1) ... 4p2(1)5 (—K1))
(11 (k1)3 (k1 + 1) ... 41(1)%3(0))|0)
(=1)kr(k2=k1) gy, (1) Avg(0) A w1 (0) A ... Avy (k) Ava(—ky +1) Avy(—k1 + 1) A
v2(1) Ava(—=k1) Avi(—ki) A... Ava(ks — k1) Ava(—k2 + 1) Avi(—ka + 1) A
v3(—ka) A va(—ka) A vi(—ka) A
— (-1)feR)gs ()

Putting the v;(k) into decreasing order we find the second formula. The degree is found
summing the indices of the Schur polynomial S5. a
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These formulas are only valid for ko > 2k; > 0. It is easy to calculate the formulas in all
other cases, but that is left to the reader. The formulas for the degree of T{* and T3> can
easily be calculated using the isomorphism . We then obtain

deg(y(T*')) = 3k? — ky and deg(y(TF?)) = 3k2 — ko.
These formulas are valid for k1, kg € Z.

3.8. Principal degree in homogeneous realization. In previous sections we generalized
the case 1 +1 = 2 to ny + ng = n. In this section we generalize it to 1 + 1+ ...+ 1 =mn, the
homogeneous realization. Here we have the isomorphism

(62) Clz®,...,2™]) @ C[fy] = (R F) ® C[f] = FO ~ C[a]
i=1

Here T}, is a group of operators T;, 1 < ¢ < n — 1. T; replaces a fermion of type i + 1 by a
fermion of type i. They satisfy the relations T;T; = —T;T; when |i — j| = 1, and T;T; = T;T;
otherwise, cf. [4].

It is easy to find an expression for the image of a product of Schur-functions:

(63) y (1’[ S\ (z‘“)) = S5(z)
=1

(64) F(mn +4) =AY,
SO

= @A™ oA, e )
We thus have

(65) deg (v(H S (x“)))) =n)_ A&
i=1 =1

On F© ¢(0) acts as 0. Because a(0) = Y @;(0) we can eliminate o, (0). Introduce now
i
(66) ,3i5=zaj(0)1§i§n~1

We then have a;(0) = 81, @;(0) = 8; — Bi—1 (1 < i < n) and an(0) = —Br—1. The eigenvalue
of ¢;(0) is the charge of the fermions of type i. The eigenvalue of 3; corresponds with the
power of T;. The next proposition and corollary show that in the homogeneous case we can
express the principal degree of the image polynomial in terms of the principal degrees of the
original Schur polynomials and the powers of the operators 7;.

Proposition 3.9. On F©) we have the following equalities:

n—1 n—1
(67THy = nZZaz —k)a;(k) —I—nX:az +n z a;(0)c;(0) Z n —1)a;(0
i=1

i=1 k>0 ig=Li<i
n o n—1 n—1

68) = nY_ Y ai(-k)ai(k) +"Zﬁ¢2 —nY Bificr— Y Bi
i=1 k>0 i=1 i=2 i=1

35
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Proof.
Hy = > k:ip(k)y*(k):
kEZ
= YN (n(k —1) +6) : (k)P (k) :
i=1 keZ

= n i Y + f:(i ~ n)a;(0)
i=1 =1

Now we use Héi) = ko i(—k)ai(k) + %—ai(O)Q + 2;(0). Then we obtain

Hy = nZ Z ai(—k)a; (k) + %n Z(azi(O)2 + a;(0)) + Z(z —n)a;(0)
=1

i=1 k>0 i=1
n n—1 n—1 n—1
= nY Y ai(—k)ai(k) + %n > @i(0)2 + %n > (0)e;(0) = Y (n — i) (0)
i=1 k>0 i=1 i,j=1 i=1
n n—1 n—1 n—1
= nY Y ai(-k)eik) +n > (02 +n > @i(0)a;(0) — > (n —14)a;i(0)
i=1 k>0 i=1 i,j=1,i<j i=1
n n—1 n—1
= 13 iRk + (B + 3 (B - Bia) + B21) — 3 i
i=1 k>0 i=2 =1
n n—1 n—1 n—1
= ny Y a(-Kaik)+ndY f-nd BBi1-Y b
i=1 k>0 =1 =2 =1

Corollary 3.10.

n

n n—1 n—1 n—1
(69) deg (7 (Tl’“ T ] Sae (x(”))) =ny M +nd) kK —nd kikii - ki
i 1=1 =1 =2 =1

wy
In corollary 3.10 we see that deg modn only is determined by the k; and not by the parti-
tions A(Y). We have already seen the formula for n = 2 in equation (54).

Ezample 3.11. For n = 3 corollary 3.10 gives:
(70) deg (7 (TflezsA(l) (@) Sy (x(2)))) = 3Kk2 — ky + 3k2 — ko — 3kiks

This formula agrees with the formulas (3.6) and proposition 3.7.

According to corollary 3.10 we have deg(a:,(:)) = nk. In this homogeneous case the degree

deg is almost equal to the principal degree deg. It is easy to show that dego(z,(:)) =k

3.12. g-dimensions. We have the isomorphism

(71) FO ~ (@ F,.(O)) ® CT

i=1
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We can now take q-dimensions of equation (71) with respect to the principal degree. Using
©(g) = [12,(1 — ¢*) we obtain the following formula

1 1 n 2
(72) trace (O)qu — — ( > qnzki —n Yy kiki_1—Y ki
g w9 \el™)/ %_1 g

We can rewrite the second part of the equation. We then get

n

(73) Z q"Ek?—nZkiki_l—Z ki _ (p(qn)

ki,..oskn—1€Z SO(q)

Ezample 3.13. For n = 2 equation (73) becomes

2k2— e(g*)? gL~ q*)
= ;Zq ) Hk =)

The left hand side is equal to 3, q%k(’”l), so we get

Lkktn) _ 2(@%)?
(7%) g 1 olg)

The formulas (74) and (75) can also be derived from the classical Jacobi triple product
identity (see [3]):

(76) H(l — bR (1 — uFo* ) (1 - Wbo?) = Z(—l)ju%j(j"“l)v%j(j—l)

k>1 JEZ

Take u = —¢3 and v = —q. Then we get

Zq2j2+j - H(l +q4k—3)(1 +q4k—1)(1 o q4k)

JET k>1

= JIa+d¢* ) +a* A+ )1 - %)
k>1

= JJa+dH01-d*)
k>1

- T (1-¢*)* _ ¢(¢?)?
s - (q)

so equation (74) is verified. For equation (75) we can take u = —q and v = —1 in the Jacobi

identity (76).

3.14. Some formulas on F®*), Because of the isomorphism F®*) ~ F(©) we can also look
at the principal degree on F*). We can write this in terms of the m;, the eigenvalues of the

@;(0), or in terms of the k;, the eigenvalues of the 8;. We have k; = Z;Zl m;. Note that we
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know have ) a; = k. We then obtain for the principal degree on F(*) the following formulas:

n
dog (7 (Tf‘ T TS50 (zw))) _
=1

n n n
: 1 1
(77) =nZ|A(')|+§an?+Zimi—§nk
=1 =1 i=1
n ] n—1 n—1 n—1 1
(78) = 'n,Z |)\(z)| +n Z ki2 = ’I’LZ kik;_1 — Z ki — nkk,_1 + Enk(k + l)
i=1 =1 1=2 =1
This leads to the following g-dimension formulas:
Le(k+1)
q2
79 trace pyg® =
(79) i ()
q—%"k 1 2 o
o S B g
LV ml,...,mHEZ,Zmi=k
1
- gz"k(E+1) nY kI-nY kiki_1—nkkn_1—3 k;
(81) TOE q
P kiyeeskn—1€Z
We can rewrite this formulas to
(82) w(g™)"” Z q%n Z(mi—§)2+2i(mi—%)
©(q) meCZ 3 ik
(83) = Z q%anHZimi
mi€—§+Z,Z m;=0
and
o(g™)" kY2 k 1k k
(84) @ e Z an(kz—z;) —n 3 (ki—id)(ki—1—(i~1) )= (ki —i%)
Lt k;€Z
(85) = Z ank?—nZkiki_l—z k;

ki€e—ik 47 (1<i<n)
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